georg.brandl
2008-08-10 12:16:45 UTC
Author: georg.brandl
Date: Sun Aug 10 14:16:45 2008
New Revision: 65627
Log:
Remove long integer output.
Modified:
python/branches/py3k/Doc/tutorial/floatingpoint.rst
Modified: python/branches/py3k/Doc/tutorial/floatingpoint.rst
==============================================================================
--- python/branches/py3k/Doc/tutorial/floatingpoint.rst (original)
+++ python/branches/py3k/Doc/tutorial/floatingpoint.rst Sun Aug 10 14:16:45 2008
@@ -173,24 +173,24 @@
+ 4503599627370496
+ 9007199254740992
+ 7205759403792794.0
That is, 56 is the only value for *N* that leaves *J* with exactly 53 bits. The
+ 6
Since the remainder is more than half of 10, the best approximation is obtained
+ 7205759403792794
Therefore the best possible approximation to 1/10 in 754 double precision is
that over 2\*\*56, or ::
@@ -211,7 +211,7 @@
+ 100000000000000005551115123125
meaning that the exact number stored in the computer is approximately equal to
the decimal value 0.100000000000000005551115123125. Rounding that to 17
Date: Sun Aug 10 14:16:45 2008
New Revision: 65627
Log:
Remove long integer output.
Modified:
python/branches/py3k/Doc/tutorial/floatingpoint.rst
Modified: python/branches/py3k/Doc/tutorial/floatingpoint.rst
==============================================================================
--- python/branches/py3k/Doc/tutorial/floatingpoint.rst (original)
+++ python/branches/py3k/Doc/tutorial/floatingpoint.rst Sun Aug 10 14:16:45 2008
@@ -173,24 +173,24 @@
2**52
- 4503599627370496L+ 4503599627370496
2**53
- 9007199254740992L+ 9007199254740992
2**56/10
- 7205759403792793L+ 7205759403792794.0
That is, 56 is the only value for *N* that leaves *J* with exactly 53 bits. The
q, r = divmod(2**56, 10)
r
- 6Lr
+ 6
Since the remainder is more than half of 10, the best approximation is obtained
q+1
- 7205759403792794L+ 7205759403792794
Therefore the best possible approximation to 1/10 in 754 double precision is
that over 2\*\*56, or ::
@@ -211,7 +211,7 @@
7205759403792794 * 10**30 / 2**56
- 100000000000000005551115123125L+ 100000000000000005551115123125
meaning that the exact number stored in the computer is approximately equal to
the decimal value 0.100000000000000005551115123125. Rounding that to 17